Molecular basis for the antiparasitic activity of a mercaptoacetamide derivative that inhibits histone deacetylase 8 (HDAC8) from the human pathogen schistosoma mansoni.
نویسندگان
چکیده
Schistosomiasis, caused by the parasitic flatworm Schistosoma mansoni and related species, is a tropical disease that affects over 200 million people worldwide. A new approach for targeting eukaryotic parasites is to tackle their dynamic epigenetic machinery that is necessary for the extensive phenotypic changes during the life cycle of the parasite. Recently, we identified S. mansoni histone deacetylase 8 (smHDAC8) as a potential target for antiparasitic therapy. Here, we present results on the investigations of a focused set of HDAC (histone deacetylase) inhibitors on smHDAC8. Besides several active hydroxamates, we identified a thiol-based inhibitor that inhibited smHDAC8 activity in the micromolar range with unexpected selectivity over the human isotype, which has not been observed so far. The crystal structure of smHDAC8 complexed with the thiol derivative revealed that the inhibitor is accommodated in the catalytic pocket, where it interacts with both the catalytic zinc ion and the essential catalytic tyrosine (Y341) residue via its mercaptoacetamide warhead. To our knowledge, this is the first complex crystal structure of any HDAC inhibited by a mercaptoacetamide inhibitor, and therefore, this finding offers a rationale for further improvement. Finally, an ester prodrug of the thiol HDAC inhibitor exhibited antiparasitic activity on cultured schistosomes in a dose-dependent manner.
منابع مشابه
Histone Deacetylase Inhibitory and Cytotoxic Activities of the Constituents from the Roots of Sophora Pachycarpa
Four prenylated flavonoids including isosophoranone, sophoraflavanone G, alopecurone J, alopecurone P and a resveratrol derivative HPD (2-(4-hydroxyphenyl)-2,3-dihydrobenzo[b] furan-3,4,6-triol), were isolated from the roots of Sophora pachycarpa. The cytotoxic activity of obtained compounds was evaluated against A2780, A549, HeLa, and HCT116 human cancer cell lines. We also evaluated their his...
متن کاملHistone Deacetylase Inhibitory and Cytotoxic Activities of the Constituents from the Roots of Sophora Pachycarpa
Four prenylated flavonoids including isosophoranone, sophoraflavanone G, alopecurone J, alopecurone P and a resveratrol derivative HPD (2-(4-hydroxyphenyl)-2,3-dihydrobenzo[b] furan-3,4,6-triol), were isolated from the roots of Sophora pachycarpa. The cytotoxic activity of obtained compounds was evaluated against A2780, A549, HeLa, and HCT116 human cancer cell lines. We also evaluated their his...
متن کاملStructural Basis for the Inhibition of Histone Deacetylase 8 (HDAC8), a Key Epigenetic Player in the Blood Fluke Schistosoma mansoni
The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti...
متن کاملAnalysis of the interactome of Schistosoma mansoni histone deacetylase 8
BACKGROUND Histone deacetylase 8 from Schistosoma mansoni (SmHDAC8) is essential to parasite growth and development within the mammalian host and is under investigation as a target for the development of selective inhibitors as novel schistosomicidal drugs. Although some protein substrates and protein partners of human HDAC8 have been characterized, notably indicating a role in the function of ...
متن کاملHistone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation.
Histone deacetylases (HDACs) are enzymes that regulate the functions of histones as well as nonhistones by catalyzing the removal of acetyl groups from lysine residues. HDACs regulate many biological processes, including the cell division cycle and tumorigenesis. Although recent studies have implicated HDAC8 in tumor cell proliferation, the molecular mechanisms linking HDAC8 to cell growth rema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 426 20 شماره
صفحات -
تاریخ انتشار 2014